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1 Introduction.

Impulsive differential equations can be used to describe a lot of natural phenomena such as the
dynamics of populations subject to abrupt changes (harvesting, diseases, etc.), which cannot be
described using classical differential equations. That is why in recent years they have attracted

much attention of investigators (cf., e.g., [2, 3, 7, 8, 9]). Meanwhile, the boundary value problem
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with integral boundary conditions has been the subject of investigations along the line with
impulsive differential equations because of their wide applicability in various fields (cf., e.g.,
1,2, 6, 10]).

In [3], D. Guo discussed the following second-order impulsive differential equations

-2’ = f(t,x), t#tx, k=1,2,---,m,
Azli—y, = Ip(z(tr)), k=1,2,---,m,
ax(0) — bz’ (0) =0, cx(1l)+da'(1) =6,
where f € C[J x P,P], J = [0,1], P is a cone in real Banach space F, 6 denotes the zero
element of E. I, e C[P,P],0<t1 < - <t < - <typ<l.a>0,b>0,¢>0,d>0and
ac + ad + bc > 0.
In [1], A. Boucherif investigated the existence of positive solutions to the following boundary
value problem
y'(t) = f(ty(t), 0<t<1,
y(0) — ay’ = J5 9o(s ( )ds
( - by fo 91
where f :]0,1] x R — R is continuous, gg, g1 : [0,1] — [0,+oo) are continuous and positive, a
and b are nonnegative real parameters.
In [2], M. Feng, B. Du and W. Ge studied the existence of multiple positive solutions for

a class of second-order impulsive differential equations with p-Laplacian and integral boundary

conditions
_(¢p(u,(t)))/ = f(t’u(t))’ t#tg,t € (0’ 1)a
—Aul=t, = I(u(ty)), k=1,2,---,n,
subject to the following boundary condition: «'(0) = 0, wu( fO t)dt, where ¢p(s) is a

p-Laplacian operator, 0 < t1 < -+ <t < --- < t, <1, f € C([O, 1] x [0,+oo), [0,4+00)), I) €
C([0,400), [0, +00)).

In this paper, we are concerned with the existence of multiple positive solutions of the
following second-order impulsive differential equations with integral boundary conditions in real
Banach space F
= f(t,x, ', Tx,Sz), teJ , t#t,

Azli—y, = —Ip(x(ty), o' (tg)), k=1,2,---,m,

A=y, = Ti(x(ty), 2 (tg)), k=1,2,---,m, (1.1)
x(0) —a:v’( ) =4,

L (1) — ba'( fo

wherea+1>b>1, J=10,1], J :J\{tl,--- m},0<t1<---<tk<---<tm<1,9den0tes

the zero element of Banach space E, T and S are the linear operators defined as follows
t 1
(Tz)(t) = / k(t,s)x(s)ds, (Sx)(t) = / h(t,s)z(s)ds,
0 0
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in which k € C[D,Ry],h € C[Dg, Ry],D = {(t,s) € I x J:t > s},Dy ={(t,s) € J x J:0<
t,s <1}, Ry = [0, +00), Az|i—y, denotes the jump of z(t) at t = ty, i.e., Az|imy, = 2(t])—z(ty),
where z(t;), z(t;,) represent the right and left limits of z(t) at t = t;, respectively. By means
of the fixed point index theory of strict set contraction operators, we establish new existence
theorems on multiple positive solutions to (1.1). Moreover, an application is given to illustrate
the main result.

Let us first recall some basic information on cone (see more from [4, 5]). Let E be a real
Banach space and P be a cone in E which defined a partial ordering in E by z < y if and only
if y —x € P. P is said to be normal if there exists a positive constant N such that § <z <y
implies ||z|| < N||y||. P is called solid if its interior Pis nonempty. If z <y and = # y, we write
x <y. If Pissolid and y — x Elg, we write x < y.

Let PC[J,E]={x : z is a map from J into E such that x(t) is continuous at t # tj, left

continuous at t = ¢, and x(t;r) exists for k =1,2,3,---,m} and
PC'J,E] :={z € PC|J,E] : «'(t) is continuous at t # ty,
and 2'(t]), 2/ (t;)) exist for k =1,2,3,---,m}.
Clearly, PC[J, E] is a Banach space with the norm ||z||pc = sup ||z(¢)|| and PCL[J, E] is a
teJ

Banach space with the norm ||z|| po1 = max{||z| pc, ||2’|| pc}-

By a positive solution of BVP (1.1), we mean a map x € PC![J, E] N C?[J', E] such that
x(t) >0 ,2'(t) >0, x(t) £ 0 for t € J and z(t) satisfies (1.1).

Let a, apen be the Kuratowski measure of noncompactness in E and PC[J, E], respectively

(see [4, 5], for further understanding). Moreover, we set J; = [0,t1], Jp = (tx—_1,tx] (k =

2,3,---,m), and for u; € P, i =1,2,3,4,
|

fOO — lim Sup max Ilf(tvuivu27u37u4) , fo — 1im Sup max Ilf(t7u147u27u37u4)” ,
4 teJ S [l 4 teJ > Jluil
lJus||—oc0 & > Jluif—0 =
=1 =1
. I (u1,u2) || 0 : 175 (w1 ,u2)||
I®(k) = lim su I (unuz) | IY(k) = limsu L L
(k) D [l (k) Dl Hus]

l[ur [|+[luz]|—o0 [l [|+[luzll—0

Similarly, we denote Too(k)jo(k).
The following lemmas are basic, which can be found in [5].

Lemma 1.1 If W C PC[J, E] is bounded and the elements of W' are equicontinuous on
each Ji (k=1,2,---,m). Then apci(W) = max { sup;ey (W (t)),sup;es a(W/(t))}.

Lemma 1.2 Let K be a cone in real Banach space E and € be a nonempty bounded open
convex subset of K. Suppose that A: Q — K is a strict set contraction and A(Q) C Q, when Q
denotes the closure of Q in K. Then the fized-point index i(A,Q, K) = 1.
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2  Main results

(Hi) feC[JxPxPxPxP,P],and for any r > 0, f is uniformly continuous on J x P2,
I, I, € C[P x P,P] (k=1,2,---,m) are bounded on P, x P,, where P, = {x € P : ||z|| < r}.
(Hg) g € L'Y0,1] is nonnegative, and u € [0,a + 1 — b), where u = fol(a + s)g(s)ds.

(H3) There exist nonnegative constants c¢;, dy, dg, i = 1,2,3,4, k = 1,2 such that

M»

a(f(t,Bl,Bg,B3,B4 CZOé V tedJ, B;CPF, (Z = 1,2,3,4), (21)
i=1
Oé(Ik(Bl,Bg)) < leé(Bl) + dga(Bg), Biy,B, C P, , (22)
Oz(Tk(Bl,BQ)) < 8104(31) —i—d_QOé(BQ), Bi,By, C P, , (2.3)
and
I =max{ly, lx} <1,
where
ll = 2m2(01 +co + ki*C3 + h*C4) + QO(El + 82) + mgm(dl + dg),
ly = 2m4(01 +co + /{?*03 + h*C4) + m4m(31 + 82) + m4m(d1 + dg),
in which

k* = max{k(t,s),t,s € D}, h* = max{h(t,s),t,s € Dy}.

(Hy) fo=f0=0,1°Fk) =1%%)=0,T (k) =T (k) =0.

Lemma 2.1 Let (Hy) and (Hz) hold. Then x € PCY[J, E)\NC?[J', E] is a solution to (1.1)
if and only if v € PC[J, E|NC?[J', E] is a solution to the following impulsive integral equation:

1 m
/0 Hi(t,s)f(s,z(s),2'(s), (Tx)(s), (Sz)(s))ds + Z Hy(t, te) In(x(ty), o' (tr))

k=1

+ Z Hz(t, tk)fk(.%'(tk), -%'/(tk))a

k=1
(2.4)

where

Hi(t,s) = Gu(t, ) + +;”i“z_u/ Gr(7,5)g

a+t
Hy(t,s) = Ga(t,s) + —|—1—b—u/ GQTS
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Proof. “=".
Suppose that x € PC[J, E] N C?[J’, E] is a solution to problem (1.1).
From (1.1), we get

w'(t)=w'(0)+/0 fs,@(s), 2 (s), (Ta)(s), (Sz)())ds + D T(a(ty), o’ (t)),

0<trp<t

and

z(t) = $(0)+t$'(0)+/(75—S)f(S,SU(S),ﬂ?'(S),(T»’U)(S),(Sfﬂ)(s))ds
Jo (2.5)
+ Y (=t e(a(tn), 2/ (t) — > Te(a(ty), 2/ (t)).

O<trp<t O<tp<t

In particular,

1

x'(l)zx/(O)Jr/ fs,a(5),2/(5), (T)(s), (Sw)(s))ds + Y Tp(a(ty), 2’ (tr)),

0 0<tp<l

and
1
z(l) = $(0)+$/(0)+/0 (1= 8)f(s,2(s),2'(s), (Tz)(s), (Sz)(s))ds
+ > (U=t T(e(te), @' (k) — > Te(w(te), 2 (t)).

0<tp<1 0<tr<1

From this and the boundary conditions in (1.1), and by induction, we obtain

2(0) = ax’(0),

and
1
2(0) = - +i — b(/o (b+s—1)f(s,z(s),2'(s), (Tx)(s), (Sz)(s))ds
+ Y (bt — DIg(t), ' () + D In(w(tn), @' (1))
0<tr<l1 0<ty<1
1
—i—/o g(s)x(s)ds).

This, together with (2.5), implies
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a 1
o) = ([ s =000, (). (T, (S2)(5)ds
+ D b+t = DIk((ty), @' () + Y In(w(te), 2/ (t))
0<tr<1 0<tr<1

1 t
+/0 g(S)x(S)di> +/0 (t —s)f(s,2(s),2'(s), (Tx)(s), (Sx)(s))ds
+ ) (=t Te(atn), 2 (t) — D Te(a(te), 2 (t))

0<ti<t 0<ti<t
= — 1 = /ot(?+ )b+t —1)f(s,2(s), 2 (), (T)(s), (Sz)(s))ds
+a+%_b/ (a+1)(b+s—1)f(s,2(s),2'(s), (T)(s), (Sx)(5))ds
+m0;<ta+tk)(b+t—l)lk( a(ty), ' (th))
+a+1‘bt<%:<1 (a+t)(b+te — DIg(x(ts), ' ()
+“+1—bo<§t,;<t b+t — 1) (x(ty), 2 (tr))
Farroy, o (o O )+ 1 | glo)als)ds.

Thus,

1 m
= /0 Gi(t, ) (s,x(s), 2 (s), (T)(s), (Sz)(s))ds + D Gult, te) T (tr), 2’ (th))

k=1

a 1
ki b/o g(s)x(s)ds.

+ 3 Golt, t) T (w(te), o (t)) + ar1=b
k=1

On the other hand,

1 1 1
| swaar = | j“)< | G191 2(9.0'65). (T0)5). (S2)4)) s
+ > Gt i) Tl (ty), 2 (t))
k=1

a 1
+3_ Galt ) o) o (00) + T | atsratsyas) .

- / / (G (t,5)f(s,2(s),2 (5), (T)(s), (S)(s))dsdt
+ [ o (Zalttk Tue(te), ' (1)) )
k=1
1 m , 1 a-+t 1
- g<t>(;G2<t,tkﬂk<w<tk>,x<tk>>)dt+ | e | s,

and also,
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1
[ stsrteras = —— / / Gr(r, )9 2(s),0'(5), (T)(5), (S2)(s))ds

1—fo o bg

/ ZGH ) (a(t), @' (1)) dr
/ g(r ZGQ Tote) Ik (2 (), 2 (¢ k)))dr).
0 k=1

Therefore, we have

1
z(t) = /0G1(t,5)f(8,90(5),€6'(8),(Tfﬂ)(S),(SfU)(S))dS
+ > Gt i) T(a(te), 2 () + ) Galt ti) I (tr), 2 (1)
k=1

k=1

a—+t 1 1 /
+a+1—b—f01(a+s)g(s)ds(/o / G1(7,8)g(T)dr) f(s,2(s),2"(s), (Tx)(s), (Sz)(s))ds

1 m .
+/ 9(m)O_ Ga(r ti)Ti(a(ty), 2 (tr)) dT—l—/ ZGQTtk In(ax(ty), ' (¢ )))dT)
10 k=1
= /0Hl(t,S)f(&x(S)aw'(S%(Tﬂﬁ)(s)a(596)(3 d3+ZH1 toti) In(x(te), ' (tr))

k=1

+ > Ho(t t) Tz (te), 2/ ().

k=1
“c”
If z € PC[J,E] N C?J', E] is a solution of Eq. (2.4), then a direct differentiation of (2.4)
yields, for t # g,

?(t) = /0 O p(s,a(s),4(s), (T)(s), (Sz)(s))ds

al—i— 1-0
b+s—1 ,
+/t a+1 jrng(svm(s)?x (s), (Tz)(s), (Swi(i)ids 1
+O<tzk<t aC—L{— 1 _k bjk(x(tk),x'(tk)) + t<§<1 . f : 7 Tip(x(ty), 2/ (1))
1 Ui - 1
+- g ; I (o(ty), 2" (tr)) + PR fol(a PRy
1 1
([(] Grmslatrinsis.ats).a' (). Fa)(s). (52)(s)as

+/ g(t Zal (1, 1) I (2 (ty), o' (t1,)))dr
0 k=1
1 m
+ [ 93 Gt (ot o (1)) ).
0 k=1
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Thus,
1
O = [ H(0(5),5 (), (T0)(5), (S)(s)ds+
791, 3 m (2.6)
> H{(t ) T(a(ty), ' (t) + Y Ho(t t) Tz (te), 7' (t)),
k=1 k=1
where

/ A 1 /1
Hl(t,S)—Gl(t,S)+‘a+1_b_u 0 Gl(T,S)g(T)dT,

1 1

Hi(t,s) =
(L) a+1—b+a+1—

1
= | Gararyar,

bls-l' <5
— )

Gi(t,s) = oI b
’ ats s <t

Differentiating (2.6), we see
21t = F(ta(t), o/ (8), (T2)(0), (S2) (1))

Clearly,
Axli—y, = —Ip(x(t), 2 (t)), Aa|i=t, = Ir(x(tr), 2" (tk)),

1
2(0) —az’(0) =0, z(1) —ba'(1) = /0 g(s)x(s)ds.

The proof is then complete.[]

The following “Facts” are clearly known.
Fact I. For t,s € [0,1], we have

alb—1)
a+1-—0b

b—-1 a+1
2l et < 2L
a+1—5b" 2(’S)_a—i—l—b

b—-1 a+1
— <Gt < ————,
a—l—l—b_Gl(’S)_a—l—l—b

Fact II. For t,s € [0, 1], there exist positive constants m; ,m; (i = 1,2,3,4) such that

(a+1)b
< < —
_Gl(t7s)— a+1_b7

alb—1)  a?(b—1)u < (a+1)b  (a+1)%buy

= < Hq(t =
m a—|—1—b+ U9 - 1(’S)_a—i—l—b Us m2
_ b—1 a(b — 1)uy a+1 (@+1)2%u;
m a+1—b+ Us - 2(’(S)_cﬂ—l—b_k Us me;
b—1 b—1 1 1)b
ms = =+ a( )UI < Hi(t, 8) < a+ =+ (a+ ) U1 =My ,

a+1-0 Us - “a+1-0 Us
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1 (b— 1wy , 1 (a+ 1Duy
< H5(t <
a+1—b+ U9 - 2(’S)_a—i—l—b—i_ U9

I
E

ms =

where

1
ulz/og(s)ds, up=(a+1-b—u)(a+1-0).

We shall reduce BVP (1.1) to an impulsive integral equation in E. To this end, we first consider
operator A defined by

1

Hl(tv S)f(s7 .%'(8), 1'/(8), (Tx)(s)v (Sx)(s))ds"i_
Hl(t, tk)Tk(.%'(tk), .%',(tk)) + Z Hg(t, tk)Ik(m(tk), x'(tk)).

k=1 k=1

(Az)(t) =

S~

2.7)

In what follows, we write
Q= {x € PCJ E]:x(t) > 0,2'(t) >0,t € J}, B, ={x € PCJ E]: ||z|pcr <7}
Obviously, @ is a cone in space PC![J, E].

Lemma 2.2 Let (H;) — (H3) hold. Then for anyr >0, A: QN B, — Q is a strict set

contraction.

Proof. By (H;) and (H2), we know that A : Q N B, — @ is continuous and bounded. Let
C C QN B,. From (2.6) and (2.7), it follows that the elements of (AC)" are equicontinuous on
each J (k=1,---,m). Lemma 1.1 shows us that

apot(AC) = max { sup a((AC)(t)), sup a((AC)’(t))}.

teJ teJ

By (2.7), we obtain

a((AC)(1)) < a(@{Hl(t $)f(s,2(s),2'(s), (Tx)(s), (Sx)(s)) : s € [0, t],t € J, w € C})

+Z (Hi (L, t3)T(C(ty +§:a Hy(t, 1)1 (C (), C'(tr)))
< maa(S(s,C16). €0, (10)(s) <SC>§> ed)
+m22 (Tk(C(tr), C' (1)) +2 Y alIK(C(tr), C' (tr)))
< mg cloz(C'(J)) + coa(C'(J)) + 03a(k(130)(<])7)n+ C4a((SC)(J))>
+m22 (dla ) + doar(C (tk))> +7mn Y (dla(C( ) + dza(Cl(tk))>
By -
a(C(])) < 2apci(C),  a(C'(J)) < 2ape (C), (2.8)
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a(C(tr)) < apei(C), a(C'(t)) < apea (), (2.9)

we have

a((AC)(1) < hiapes (O).
In the same way, by virtue of (2.6)-(2.9) and (H3), we get

G((ACY (1)) < bapes (C).
Thus,

Since | < 1, we assert that A : Q N B, — (@ is a strict set contraction.[]

Theorem 2.1. Let (Hy) — (Hy) hold, P be normal and solid. Let there exist v > 0,
O0<ti<t*<lando € C[I,Ry] (I=Iltst*]) such that I C Jy for some k, and

f(t,ug,ug,uz, ug) > o(t)v  (Vtel),
t*
up>v, w>0((i=23,4), m o(s)ds > 1,
tx

where M = min{my,m3}. Then (1.1) has at least two positive solutions x1,z2 € Q N C?[J' E]
satisfying x1(t) > v and 2} (t) > v fort € I.

Proof. By Lemma 2.2, A: Q N B, — @ is a strict set contraction. Write

1 1 1

_ = g —— 2.10
T2k +hm® T 2mm® T 2mm® (2.10)
where
m) = max{meg, Mo, my, My}
By (H1) and (Hy), we know that there exist M; > 0, My > 0 and M3 > 0 such that
4
“f(t,ul,UQ,U3,U4)“ < EZ HUZH + M, Vted, u; €P, (2.11)
i=1
[k (ur, u2) || < ex(lluall + fluzll) + M2,V wr, ug € P, (2.12)
[Tk (ur, ug)|| < ea(flur]l + [luzl]) + Mz, ¥ w1, up € P. (2.13)
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Now, in view of (2.7), (2.10)-(2.13), we get

I(Az)@)] - < m2/ 1£(s,2(s), 2 (s), (Tx)(s), (Sz)(s)) | ds
+m2ZHIk ' (tr)) +m2ZIIIk 2 (t))

IN

my /0 (E(Hw(s)H + ()| + [ (T2)(s) | + 1(S2)(s)]) + My ) ds
s Y (eallat)ll + N2/ @ll) + Ms ) + 12 > (er (et + 12/ () ) + Mz )

k=1 k=1
ma(2(2+ K + )|l per + Mi ) + mam 26zl per + My )

g (2e ol per + Ma)
= <(2 + E* + h¥)mae + 2mamey + 2m2m51> llz|| pcr
+mo M7 + momMs + mamMa

IN

IN

1 _
5\\$HP01 + M,

(2.14)
where

Ml = mo M7 + momMs + momMs.

Similarly, from (2.6), (2.7), (2.10)-(2.13), we have
1 -
I(A2)" (O] < 5llzllper + M2 (2.15)

where

Mz = myM; + mymMs + mamMs.

It follows from (2.14) and (2.15) that
1 .
lAz]per < Sllzllper + M, (2.16)

where

M = max{Mi, M,}.

On the other hand, the condition (Hy4) implies that there exist 11 > 0,15 >0 and I3 > 0 such
that

4 4
£t u,ug,ug,ug)l| <€D llwill, VEET, ui€ P Y flull <1, (2.17)
=1 =1
1k (ur, u2) | < er((fuall + uzll), ¥V ui, ug € Py [lus]| + [Juz|| <12, (2.18)
[Tk (ur, ug)|| < ea(fluall + lluzll), V w1, ug € P, fur]| + lluzll <13, (2.19)
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where €,¢1, 9 defined by (2.10).
Let r; = min{ly,l,13}. Then by (2.6),(2.7),(2.17)-(2.19), we deduce that for z € Q, ||z||pc1 <
|zl pes < 3 llzllpes. (2.20)

Fix R > max{2M,4|jv||}. Let U1 = {z € Q, ||z|]|pcr < R}. By (2.16), we have

1 — 1 1 _
|Az|| pcr < 5“95”P01 +M < §H9CHP01 + §R <R, Vzel,

which gives

A(Gl) C Ug. (2.21)

Choose 0 < 7 < min{||v|| , 5777+ }, and let Us = {z € Q, [|[z[|pc1 < r}. Then by (2.20), we get

1
| Az|| pcr < §H9€HPCI <,

which implies

A(Gg) C Us. (2.22)

Let Us = {z € Q : ||z]|pct < R,z(t) > v,2/(t) > v, V t € [t,t*]}. Then it is easy to check that
Us is open in Q. Set w(t) = 2v + 2tv. Then w € @ and w(t) > v, w/'(t) > v, for t € [t t*].
Hence w € Us, and so, Us # ). By (2.21), we know that ||Az|pc1 < R, ¥V 2 € Us. On the other
hand, for x € Uz, we have
"
(Az)(t) > Hy(t,s)f(s,x(s),2(s), (Tx)(s), (Sz)(s))ds

ts -

> i [ fa(s). (6, (Ta)(o). (52)(5)ds (2.23)
_— /f*m)vds
(A2)(t) > Hj () f(s,2(5), 2'(s), (T)(s), (Sz)(5))ds
> ms3 tt* (s,2(s),2'(s), (Tx)(s), (Sz)(s))ds (2.24)
> my /tt o(s)uds > v.
Therefore,
A(Ts) C Us. (2.25)

Since Uj,Us,Us are nonempty bounded open convex sets of @, by (2.21), (2.22), (2.25) and

Lemma 1.2, we see

i(A,U;,Q) =1, i=1,2,3. (2.26)
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Clearly,
Us C Uq, Uz C U, Uy NU3g = 0. (2.27)

It follows from (2.26) and (2.27) that

i(A, U\ (T2 UTs), Q) = i(A,Up, Q) — (A4, Up, Q) — (A, U, Q) = —1.  (2.28)

Finally, (2.26) and (2.28) yield that A has two fixed point 21 € Us and x9 € Uy \(Ua UUs). It is
easy to see that

z(t) > v 2i(t)>v, forevery t € [t,,t"],

and ||z2]|pcr > 7. Hence z1(t) # 0 and x2(t) # 6. The proof is then complete.[]

3 An Example

Example 3.1. Consider the following boundary value problem for scalar second-order impulsive
integro-differential equation

(

2" (t) = 32 (x(t) +22'(t) +3 /Ot e *x(s)ds +4 /01 672356(8)(18)2
1 e_ZS:U(s)ds) 72,t e J,t #1,

1 z(3)N2 + (2
Ax|t1:1 - = ( (2 ( (

2 1001 +
1

/
Al‘ |t1=% = —

N? (3.1)

x(0) — 32'(0) = 0,

x(1) — 22'(1)

Conclusion. Problem (3.1) has at least two positive solutions x1(¢) and x2(t) such that
z1(t) > 1, 2 (t) > 1 for t € [, 4],

Proof. Let E = R' and P = R,. Then P is a normal and solid cone in E and problem
(3.1) can be regarded as a BVP in the form of (1.1) in E. In this case,

et gs) = = =t ok
1_2’9‘9—105 * — T —2,’0—,
and
u1 + 2ug + 3uz + duy \ 2 .
£, up, g, Uz, U :32( >,VteJ, w >0, i=1,2,3,4, 3.2
F(ts w1, uz, g, ua) 14wy +ug +us +ua ‘ (3:2)
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1 uf +ud

I (ur,ug) = 00T+ w2+’ (3.3)
— 1 u? + u2
Il(ul,u2) = % 1 2 (34)

5
1+ (u1+u2>

Clearly,
feC[JxPxPxPxP,P],

I €CPx P,P], I,€C[PxP,P;

for any r > 0, f is bounded and uniformly continuous on J x P. x P, x P, x P, I} and I, are
bounded on P, x P,.. So (Hj) is satisfied.
1 1 1 7
u= / (a+s)g(s)ds = / B4+ 8)—ds=—, uecl0,a+1-b)=]0,2).
; ; 0%~ 20
This means that (Hs) is satisfied.
As in Example 3.2.1 in [5], we can prove that (2.1) is satisfied for ¢; =0 (i = 1,2,3,4). By
(3.3) and (3.4), we know that (2.2) and (2.3) are satisfied for

1 — — 1
dy=do=—, dy=dy=—.
1 2= 55 @ T
By “Fact I1”, we have
39 164 __ 82 13 74 41
my=—, mo=——, TMy=— = — = — =—.
D R T R e M )
So
l < 1 la < :
5077 10
and | < 1. Hence, (Hs) is satisfied.
Moreover, (3.2)-(3.4) implies that (Hy4) holds.
On the other hand,
up +ug +uz +ug 2 1
t,uy, U2, Uz, U 232( > >32x - =8=o0(t),
f( 172, 13 4) 1+ up 4+ uo +ug + ug 4 ()
13 r 13 1
m = min{my,m3} = 29’ m/t* o(s)ds = 55 X 7 % 8> 1.

Thus, our conclusion follows from Theorem 2.1.0]
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